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THE EXISTENCE OF SINGULARITIES AND

THE ORIGIN OF SPACE-TIME

Methods of noncommutative geometry are applied to deal with

singular space-times in general relativity. Such space-times are

modeled by noncommutative von Neumann algebras of random

operators. Even the strongest singularities turn out to be prob-

abilistically irrelevant. Only when one goes to the usual (com-

mutative) regime, via a suitable transition process, space-time

emerges and singularities become significant.

1. INTRODUCTION

There is a general feeling that the future theory of quantum grav-

ity will eliminate singularities from the physical image of the world.

This widespread opinion contributes to the fact that to the majority

of cosmologists and astrophysicists the singularity problem seems to

be now less important than it seemed to be several years ago. It is

tacitly assumed that there are only two possibilities: either the “final

theory” will be singularity free, or not, and the latter possibility is

less and less popular. However, the history of physics teaches us that

a truly generalized theory can contain, as special cases, possibilities

that previously seemed to be mutually exclusive. I will show that this
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is indeed the case when the singularity problem is treated in a truly

generalized setting.

In the classical approach, singularities were regarded as elements

of space-time boundaries rather than as “internal points” of space-

time [2, 5, 15]. Various space-time boundaries were constructed (g-

boundary, b-boundary, conformal and causal boundaries...) with the

view of taming singularities, i.e., making them tractable from the

mathematical point of view. An alternative approach could be to look

for new mathematical tools and to face the problem in its full math-

ematical complexity. It is noncommutative geometry that has been

created with the view of dealing with “highly singular” situations in

mathematics [3], and in this note I will apply its methods to meet the

challenge of strong singularities in cosmology (for technical details

see [7]).

In Section 2, some key mathematical tools to deal with singulari-

ties are reminded, and with their help the truly malicious character of

strong singularities is displayed. A noncommutative method, as it is

applied to the singularity problem, is briefly presented in Section 3,

and this method is put to work in Section 4. It is shown that space-

time with strong (the so-called malicious) singularities is modeled by

a von Neumann algebra of random operators which makes singulari-

ties probabilistically irrelevant. A physical interpretation of this result

is sketched in Section 5.

2. MALICIOUS SINGULARITIES

There are reasons to believe that it is Schmidt’s b-boundary con-

struction [14] and its later history that best reveal the complex math-

ematical structure of strong curvature singularities. We first briefly

recall this construction. Let us consider a space-time (M, g), and

πM : E → M a fibre bundle of linear frames over M with the Lorentz

group G = SO(3, 1) as its structural group. Levi-Civita connection on

M determines the family of Riemann metrics on E. We select one of

them, and notice that the further construction does not depend on this
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choice. With the help of the chosen metric we determine the distance

function on E and construct the Cauchy completion Ē of E. It can be

shown that the right action of the group G on E prolongs to that of Ē.

This allows us to define the quotient space M̄ = Ē/G. We call M̄ the

b-completion of space-time M. M is open and dense in M̄. Finally,

we define the b-boundary of space-time M as ∂bM = M̄ − M. Each

g-incomplete geodesic and each incomplete timelike curve of bounded

acceleration (that can be interpreted as the history of a physical body)

in (M, g) determines a point in ∂bM.

After its publishing, Schmidt’s construction was regarded “ele-

gant” [5, p. 276] and “most promising” [15, p. 152]. However, when

Bosshard [1] and Johnson [12] computed b-boundaries for the closed

Friedman world model and for the Schwarzschild solution, it turned

out that the b-boundaries of these two space-times consisted of a sin-

gle point that was not Hausdorff separated from the rest of space-time.

This was especially disastrous for the Friedman closed model since

this meant that the initial and final singularities form (topologically)

the same boundary point. There were several attempts to cure the sit-

uation, but none of them was fully successful (for a review see [4]),

and Schmidt’s construction went slowly in oblivion.

However, instead of rejecting Schmidt’s construction it is inter-

esting to clarify the situation. This can be done with the help of

slightly generalized but otherwise standard methods of differential

geometry and topology [11]. It turns out that it is an equivalence

relation ρ ⊂ E × E, defined by p1ρp2 ⇔ there exists g ∈ G such

that p2 = p1g, that is responsible for the pathological behavior. Let

x0 be a b-boundary point, and p0 ∈ π
−1
M̄

. We say that the singularity

remains in a close contact with equivalence classes [p] of all p ∈ E,

if p0 ∈ cl[p] for every p ∈ E. If this is the case, the singularity is

called malicious. We have demonstrated that both the initial and final

singularities in the closed Friedman model, and the central singularity

in the Schawrzschild solution are malicious singularities. In this case,

the fiber over the singularity reduces to a single point [11]. This is

why Schmidt’s construction does not work well.
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3. NONCOMMUTATIVE APPROACH

To translate Schmidt’s construction into the noncommutative lan-

guage we apply the standard method of making a space noncommu-

tative [3, pp. 86–87]. We consider the fibre bundle πM : E → M, as

above. The structural group G acts on E, E × G → E. This allows

us naturally to define the groupoid Γ = E × G which is isomorphic

to
⋃

x Ex × Ex where Ex is the fiber over x ∈ M. We further de-

fine the noncommutative algebra A = C∞c (Γ,C) of smooth, compactly

supported, complex valued functions on Γ with the convolution as

multiplication [8, 13]

(a1 ∗ a2)(p1, p2) =

∫
Ex

a1(p1, p3)a2(p3, p2) dp3

for a ∈ A, p1, p2, p3 ∈ Ex, x = πM(p3). The algebra A has the

vanishing center, but we define the “outer center” of this algebra as

Z = π∗
M

(C∞(M)) which acts on the algebra A, α : Z ×A → A, in the

following way

α( f , a)(p1, p2) = f (p1)a(p1, p2),

a ∈ A, f ∈ Z. It is clear that the geometry of space-time M is en-

coded in Z (in [7] we have shown that Z can be restricted to bounded

functions on M with no loss of generality).

Let us now define Ē = E ∪ {p0} and assume that the point p0

remains in close contact with all equivalence classes of the relation ρ.

We extend this relation to ρ̄ ⊂ Ē × Ē by assuming (p0, p0) ∈ ρ̄. Let us

denote Ē/ρ̄ by M̄. We now have the groupoid Γ̄ = Γ ∪ {(p0, p0)} over

Ē.

We now construct the algebra Ā on the groupoid Γ̄. We first define

the algebra A⊕ Z with the multiplication

(a + f ) ∗ (b + g) = a ∗ b + α( f , b) + α(g, a) + f · g,

then we extend this algebra to Γ̄ (functions from A are extended

through zero, i.e., we put ā(p0, p0) = 0, and ā|Γ = a). Finally, we set

Ā = A⊕ Z̄.
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In the presence of a malicious singularity the algebra Z reduces to

Z̄ consisting only of constant functions. This corresponds to the fact

that space-time M with at least one malicious singularity collapses to a

single point. However, in agreement with the philosophy of noncom-

mutative geometry, all information about space-time with malicious

singularities is stored in the algebra Ā.

4. IRRELEVANCE OF MALICIOUS SINGULARITIES

Let us define the representation, the so-called regular representa-

tion, of the algebra A in the Hilbert space Hp = L2(Γp) where Γp

denotes all elements of Γ with p as a second element of the pair. The

representation is of the form

(πp(a)ψ)(p1, p) =

∫
Ex

a(p1, p2)ψ(p2, p) dp2

for a ∈ A, ψ ∈ Hp, p, p1, p2 ∈ Ex with x = πM(p). For f̄ = λ =

const ∈ Z̄ we have

(πp( f̄ )ψ)(p1, p) = λψ(p1, p).

It comes as a surprise that every a ∈ A generates a random oper-

ator ra = (πp(a))p∈E acting on a collection of Hilbert spaces {Hp}p∈E.

An operator valued function E ∋ p 7→ r(p) ∈ B(H)p is called a

random operator if it satisfies the following conditions [3, pp. 50–53]:

(1) If ξp, ηp ∈ Hp then the function E → C, given by E ∋ p 7→

(r(p)ξp, ηp), a ∈ A, is measurable with respect to the usual

manifold measure on E.

(2) The operator r is bounded, i.e., ||r|| < ∞, ||r|| = ess sup||r(p)||,

where “ess sup” denotes supremum modulo zero measure sets

(the so-called essential supremum).

Operators ra = (πp(a))p∈E , satisfy these conditions.
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We define the algebraM0 of equivalence classes (modulo equality

almost everywhere) of random operators ra, a ∈ A, and complete it to

the von Neumann algebra M = M′′
0

where M′′
0

denotes the double

commutant of M0. The algebra M is called von Neumann algebra of

the groupoid Γ. Probabilistic aspects of the algebra M are studied in

[9] (it should be remembered that the theory of noncommutative von

Neumann algebras is regarded as the measure theory of noncommu-

tative spaces [3, pp. 45–48]).

We repeat the same with the algebra Ā, and define the algebra M̄0

consisting of random operators of the type rā with ā ∈ Ā where ā =

a + λ. From the von Neumann theorem on the double commutant we

have M′′
0
=M. It can be easily seen that also M̄′′

0
=M. This follows

from the fact that random operators are equivalence classes of the

equivalence relation that is defined by equality “almost everywhere”.

As the consequence we have

M′′0 = M̄
′′
0 =M.

This is an important equality. Let us notice thatM0 is the algebra

of random operators before the singular point has been attached, and

M̄0 is the algebra of random operators after the singular point has

been attached. If we complete these two algebras to the von Neumann

algebra, we obtain the same von Neumann algebraM. This means that

from the probabilistic point of view the singular point is irrelevant.

5. INTERPRETATION

Our main result can be described in the following way. If we decide

to encode information about space-time M with at least one malicious

singularity in the algebra Ā = C∞c ((Γ̄,C), ∗) then it turns out that the

regular representation of this algebra on a family of Hilbert spaces

is an algebra of random operators which makes the initial singularity

probabilistically insignificant. This result, obtained in a mathematically

rigorous way, suggests an interesting physical interpretation.
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Let us notice that, in the present work, singularities were treated

in a purely classical way; so far quantum effects were not even men-

tioned. However, algebras of bounded operators on Hilbert spaces and,

in particular, von Neumann algebras, are typically quantum mathemat-

ical structures. It looks, therefore, as if malicious singularities “knew

something” about the quantum aspect of reality. In fact, basing on

this suggestion and on this mathematical structure, a model has been

constructed unifying general relativity with quantum mechanics [6, 8,

9, 10]. If we agree that noncommutative geometry will somehow be

engaged into the future quantum gravity theory then the problem is

not of whether singularities exist on the fundamental level or not, but

rather of whether they are relevant or not.

Usually, when the origin of the universe is discussed, two mu-

tually exclusive possibilities are tacitly assumed: either the universe

had a singular beginning, or not. However, as we have demonstrated,

the third answer is possible: on the fundamental level even malicious

singularities are irrelevant. In this approach, probability, albeit in a

generalized (noncommutative) sense, is an inherent aspect of the fun-

damental level, and in this probability dominated regime singularities

are irrelevant. Only when one goes to the macroscopic level, space-

time appears and the singularities acquire their significance.

This transition can be made mathematically precise. It is clear

that the information about space-time is contained in the outer center

Z, and to go from the noncommutative regime to the usual space-

time geometry one must somehow restrict the algebra A to Z. In

[10] we have shown that this can be done with the help of a suitable

“averaging” of elements of A. As we remember, in the presence of a

malicious singularity the outer center Z reduces to constant functions,

and space-time with its singular boundary collapses to a single point.

To avoid this degeneracy one must use sheaf of algebras rather than a

single algebra (for details see [11]).

We can speculate that since noncommutative algebras are nonlocal

(the concepts of a point and its neighbourhood are meaningless), the

fundamental level is aspatial and atemporal (on this level there is no
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space and no time in the usual sense). The universe simply is, and

is immersed in an overwhelming probabilistic aspect. Only from the

point of view of the macroscopic observer the question of whether it

had a singular beginning in its finite past and will have a singular end

in its finite future, acquires its dramatic meaning.
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